
Abstract: A compliant gripper gains its dextral manipulation 
by the flexural motion of its fingers.  It is a preferable device to 
grippers with actuations because of reduced fabrication 
complexity and increased structural reliability. The prediction 
of contact forces and deflected shape are essential to the design 
of a compliant gripper. We present here a formulation based on 
Nonlinear Constrained Optimization (NCO) techniques to 
analyze contact problems of compliant grippers. For a planar 
compliant gripper this formulation essentially reduces the 
domain of discretization by one dimension. Hence it requires 
simpler formulation and is computationally more efficient than 
other methods such as finite element analysis.   As this method is 
rather generic, its use will facilitate design analysis and 
optimization of compliant devices. We illustrate these attractive 
features with two types of compliant grippers; macro-handling 
and micro-assembly applications.

Keywords –Flexible Manipulators; Micro Manipulation

1 Introduction 
Mechanical grippers have many applications in high-speed 

production automation. A typical robotic gripper with two or 
more rigid fingers is often actuated by an electrical or a 
pneumatic motor. Unlike grippers with rigid fingers, a 
compliant gripper is capable of large flexural deflection and 
is manipulated by means of its contact with the object being 
handled rather than by an external actuator. The concept of 
compliant gripping has been widely used for snap-fit 
assembly.  Bonenberger [1] has a comprehensive description 
on design of snap-fit assembly.  Lee et al [2] designed the 
complaint rubber grippers for singulating broiders for poultry 
meat production, and later [3] exploited their application as 
graspers to automate transferring of live birds. As a compliant 
gripper requires no external actuators and sensors for 
feedback to accommodate a limited range of shapes/sizes of 
the live objects, it has been more attractive than traditional 
grippers for high-speed automation. In addition, compliant 
grippers are easy to fabricate, assemble, and maintain.     

Advance in MEMS has realized the need for mass 
production of micro components. Various micromachining 
methods have been developed, such as IC-based silicon 
processing, LIGA, surface machining, and micro electro
discharge machining (EDM). However, these techniques are 
only capable of two-dimensional (2D) fabrication. In order to 
create broader applications based on MEMS devices, it is 
required to develop microgrippers for manipulating and 
assembling micro components for 3D applications. The 
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interest to reduce the complexity of 3D assembly has 
motivated the development of passive microgrippers. As 
compared to active microgrippers which may be driven by 
means of electro-thermal [4], electrostatic [5], 
electromagnetic [6] or piezoelectric [7] actuators, passive 
micro-grippers requiring no external actuators rely on contact 
between compliant fingers and the micro component to 
generate motion required for assembly; for examples, a 
micro-machined end-effector for MEMS assembly [8], and a 
compliant microgripper for micro snap-fit connector [9]. 
Since uncertain actuator displacement does not exist in 
passive microgrippers, they have significant potential for 
very high precision applications. However, design of a 
compliant gripper is more challenging due to the difficulty in 
predicting the contact-induced deflection of its fingers.    

Compliant fingers undergo large deflection when they 
contact the object. The essence of the analysis is to determine 
the normal and tangential contact forces that must satisfy the 
boundary conditions at the interface. Since most contact 
problems involving large deformation do not permit 
analytical solutions, designers have resorted to numerical 
methods for approximation solutions. Among them, the 
matrix inversion method satisfies boundary conditions at 
specified matching points. It has been used by Paul & 
Hashemi [10] to calculate normal contact forces. Another 
method, the variational inequality method, determines the 
shape and size at contact by using well-developed 
optimization techniques. Fichera [11] and Duvant & Lions 
[12] have investigated on the existence and uniqueness of 
solution to contact problems. They show that the true contact 
area and surface displacement are those that minimize the 
total strain energy. From a numerical perspective, Kalker [13] 
formulate the minimization problem as a quadratic 
programming problem to solve frictionless non-Hertzian 
contact problems. The above two methods are based on the 
elastic half-space model [14] so that linear elasticity theory 
holds. For contact problems involving large deformation at 
contact, a more general approach, the finite element method
(FEM), is widely used to analyze compliant grippers. 
However, its formulation is complicated and often requires 
intensive computation. Yin and Lee [15] proposed a 
numerical solver based on elliptical integrals to solve the 
problem of a large-deflected gripper contacting an elliptic 
object. By assuming only one contact point exists, the results 
agree well with those obtained by using FEM with less 
computation time. However, the solver models the gripper as 
a 1D segment without considering the thickness of the finger. 
Hence it is not applicable to thick fingers. 

This paper presents an efficient computational model using 
nonlinear constrained optimization techniques to facilitate the 
design of compliant grippers. This model is rather general and 
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can be used to analyze contact between an arbitrarily shaped 
2D object and a compliant gripper with arbitrary geometry in 
its lateral direction. Key to this model is the expression of 
strain energy and formulation of geometric constraints. This 
remaining paper offers the following:  
1. A formulation based on the Nonlinear Constrained 

Optimization (NCO) technique. It offers a means to predict 
the deflected shape of the compliant gripper and its contact 
forces (both normal and tangential) with an object where 
the geometric shapes of the gripper cannot be ignored. 

2. Two classes of design configurations are considered.
namely, gripping with and without a rigid jaw as shown in 
Figs. 1(a) and 1(b) respectively. The former relies on 
indirect contact with the object through a jaw while in the 
latter the compliant gripper directly contacts the object. 

3. A numerical solver based on Sequential Quadratic 
Programming method. This method solves the nonlinear 
constraint optimization problems. 

4. Verification with FEM. We simulate two examples using 
the proposed method and compare the computed results 
against those obtained using FEM; the results are in 
excellent agreement with simpler formulation and much 
less computation effort.  

(a) Grip with a rigid jaw 

(b) Continuous grip without a rigid jaw (c) Differential segment
Fig. 1 Compliant gripping contacts 

2. General Formulation of the Contact Problem 
We formulate the compliant gripper contact problem as a 

constrained optimization problem. This begins with the strain 
energy expression of a compliant gripper capable of large 
deflection with shear deformation; followed by the 
formulation of geometric constraints that prevent the gripper 
from penetrating the object. The minimization of strain 
energy with geometric constraints together forms a nonlinear 
constrained optimization problem after discretization. 
Normal and tangential contact forces can be obtained by 
using the Newton’s 3rd law.

2.1 Formulation of strain energy of the gripper 
 Consider the two classes of compliant grippers as shown in 
Fig. 1(a) and Fig. 1(b). The manipulation of grippers depends 
on the contact forces from the rigid object to make the fingers 
deflect in such a way that can accommodate the geometry of 
the object. The gripper shown in Fig. 1(a) has a triangular jaw 
attached at the end while the surface of the gripper in Fig. 1(b) 
is in direct contact with an elliptical object. Note that the 
shapes of the jaw and object are not restricted to the 
schematics shown in Fig. 1.    

In order to characterize the gripper deflection, we 
generalize Timoshenko’s beam theory [16] so that it can 
account for large flexural deflection with shear deformation. 
Timoshenko’s beam theory is applicable to small deflections 
with assumptions that (a) the cross-section remains planar 
after deflection and (b) the gripper is inextensible. The 
deflection of a differential segment shown in Fig. 1(c) is 
interpreted as a superposition of two effects: (I) a bending 
moment induces an angle of rotation without changing the 
shear angle, and (II) the shear force distorts the segment by a 
shear angle  without causing it to rotate. The resultant of 
these effects is that the cross-section rotates by an angle + .
Furthermore, by replacing the differential arc length ds with 
dx, we generalized Timoshenko’s theory so that it is 
applicable to large deflections.  Since most deformation of 
the gripper is due to bending and shear, we neglect the local 
surface deformation (treat as rigid surface) and state the strain 
energy V stored in a deflected gripper as 

L
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where s is an arc length;
A, L, and I are the cross-section area, length and moment of 

inertia of the gripper respectively;  
E and G are respectively the Young’s and shear moduli of 

the gripper;  
 is the angle of rotation of the gripper; 
 is the shear angle of the gripper; 
is the shear coefficient; and 

[xC, yC]T is the position vector of the contact point. 
The shear coefficient  is introduced in order to correct the 
assumption (a) made above. In (1), the 1st and 2nd terms in the 
integral account for the strain energy due to bending and 
shear respectively. Here we perform a quasi-static analysis 
and assume that the gripper and object are on the verge to slip. 
Hence the magnitude of normal force |Fn| and contact force 
|Ft| are related to each other by µ|Fn|=|Ft| where µ is kinetic 
friction coefficient. Since the virtual work due to normal and 
friction force is canceled between the gripper and object, the 
potential energy of the system only includes (1).

From hereafter we set the x-axis pointing to the undeflected 
direction of the gripper and y-axis to the deflected direction. 
The dash line in the middle of the finger represents the neutral 
axis and the position of a point (x, y) on it can be obtain as 

s
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where ŝ is the arc length from origin O to point (x, y).
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2.2 Formulation of geometric constraints 
The geometric constraints are formulated in order to 

describe the state at contact. Specifically, the points )~,~( yx on
the contact surface of the gripper must satisfy the following 
inequality in order not to penetrate the rigid object 

0)~,~( yxg (3)
where g(x,y)=0 describes the surface of the object that 
contacts the gripper. Depending on the location of contact, 
the points )~,~( yx on the contact surface for the two classes of 
grippers can be stated as follows.
Case I: Compliant finger with a rigid jaw (indirect contact)
 Since the local deformation near contact area of the jaw is 
small compared with the deflection of the finger, it can be 
treated as a rigid body. The position )~,~( yx  of a point on the 
surface of the jaw, i.e., line segment ab, can be described by 
the angle of rotation at s=L and the point [x(L), y(L)]. 
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where the subscript L denotes the value obtained at s=L; and 
[Px, Py]T is the position vector from (xL, yL) to )~,~( yx  in 
the jaw frame (with origin at [xL, yL]T and axes parallel 
to x-y before contact); 

Case II: Direct contact between compliant finger and object
When the finger surface is in direct contact with the object, 

an arbitrary point )~,~( yx on the contact surface of the finger 
can be related to its corresponding point on the neutral axis by 
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where w(s) is the thickness of the finger. 
2.4 Determination of normal and tangential contact forces 

Of all the points on the contact surface, the one that 
satisfies the surface function g=0 is denoted as PC=[xC yC]T.
The contact force can be obtained by applying Newton’s 3rd

law at the gripper. Specifically, the contact forces F=[xC yC]T

from the gripper to the object (or -F from the object to the 
gripper) must have a moment on the gripper that equals the 
reaction moment at O.

FPC
sds

d
sEI

0
)( (6)

The contact force F includes normal and tangential 
components that can be written in the following form. 

F = [Fx Fy]T = Fn+Ft = [Fnx Fny]T + [Ftx Fty]T (7)
The direction of normal contact force must be parallel to the 
gradient of the object surface at (xC yC).

nx

ny

yx F

F

xg
yg

CC ),(/
/

(8)

Since normal contact force and tangential (friction) contact 
force are orthogonal to each other, we have 

tynytxnx FFFF (9)
Since the contact surface is on the verge to slip, the magnitude 
of normal force relates to the magnitude of friction force by 

2222
tytxnynx FFFF (10)

where µ is the kinetic friction coefficient. The components Fnx,
Fny, Ftx, and Fty can be solved simultaneously from (6), (8), 
(9), and (10). Note that the signs of Ftx and Fty have to be 
determined from the direction of interaction between the 
gripper and object. 

2.5 Numerical discretization 
In order to obtain the deflected shape of the gripper, we 

apply the principle of minimum potential energy for (1) with 
geometric constraints (3). Specifically, the principle of 
minimum potential energy states that of all admissible 
displacements, those that satisfy the equilibrium condition at 
contact make the total potential energy minimum. Namely, 
we are trying to find the minimum of V from (1) with the 
admissible displacements imposed by (3). Rather than 
seeking a closed-form solution, we resort to numerical 
approximations by discretizing the neutral axis of the finger 
into N equally spaced intervals and the contact surface into M
equally spaced intervals. We use capital letters to denote the 
approximated values of the variables.

sisi , N
Ls , Ni ~0

)( iii s ; )( iii s , Ni ~0
)( iii sxxX ; )( iii syyY , Ni ~0

)(~~~
jjj sxxX ; )(~~~

jjj syyY , Mj ~0

(11)

Hence we can approximate (1) by, but not restricted to, the 
trapezoidal rule. 
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The area A and moment of inertia I are approximated as 
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Since the gripper is clamped at the base, the initial angle of 
rotation ( 0) and position (x0, y0) are equal to zero. 

00 ; 00X ; and 00Y (14)
Follow from (2), any point on the neutral axis of the finger 
can be approximated as 

1
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(15)

where i=1~N. The points on the contact surface can be 
obtained by plugging (15) into (4) or (5). The approximated 

)~,~( YX  is then substituted into (3)

0)~,~( jjj YXg ; Mj ~1 (16)
Equation (12) is a quadratic object function that has to be 
minimized subject to the constraint functions from (16) with 
independent variables i and i (i=1~N). The numerical 
solvers for obtaining the optimal solution will be presented in 
Section 3. Note that the number of intervals M for the neutral 
axis, in general, does not have to be equal to the number of 
intervals N of the contact surface. 
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3 Sequential (Successive) Quadratic Programming (SQP) 
 In this section we introduce a numerical algorithm based 
on sequential quadratic programming (SQP) to solve the 
optimization problem governed by (12) and (16). The general 
nonlinear minimization problem with inequality constraints 
can be stated as follows. 

min )(xf
subject to 0)(xig , Mi ~1 (17)

where gi is the ith inequality constraint function. 
The idea of SQP is to approximate the current state (say, xk)
by a quadratic programming (QP) sub-problem as 

min ppxp T
kk

T fL )(2
2
1

subject to 0)()( kiki gg xx , Mi ~1 (18)

where kxxp  and 
m

i
ii gfL

1

)()( xx

Equation (18) contains a quadratic approximation of f(x)
and linear approximations of gi(x). The minimizer of (16) is 
then used to define a new state by setting xk+1= xk+p. The 
minimizer of the QP should be the optimal solution of (17) 
when the iterative process converges. The disadvantages of 
SQP are that the computation of Hessian matrix 2L(xk) is 
time-consuming for large problems and that it may not be 
positive definite. Various quasi-Newton algorithms can be 
used to approximate Hessian matrix. Here we adopt the 
popular BFGS algorithm (by Bryoden, Fletcher, Goldfarb, 
and Shanno). The formulae are states as follows [17]. 
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1
~

kW  is the approximation Hessian for the next step. The 
steps for the SQP are outlined as below. 
Computational steps
Given initial x0, 0

~W , 0,i (i=1~m), ]1,0[ , and tolerance :
1. Solve (18) for p and k+1,i (i=1~m) 
2. For k=0,1,2…

Set xk+1 = xk + p
 While fk+1 > fk

xk+1 = xk + (xk+1 - xk)
 End 
Obtain BFGS update matrix 1

~
kW from (19). 

If |f(xk+1)|< , exit 
End 

4 Verification of Frictionless and Frictional Contact 
In this section we illustrate with two examples to verify the 

NCO technique introduced in Section 2. In Example I, we 
consider an indirect gripping contact where the object 
contacts with the gripper through a triangular jaw. In 
Example II the direct contact of the gripper with an elliptical 
object is considered. The simulation results are then 

compared against those obtained by using FEM. Both 
frictionless and frictional contacts will be considered. Note 
that in Example I we need not consider shear deformation 
since finger thickness is relatively small.  
Example I: Passive gripper for micro-assembly

The assembly process using a compliant gripper includes 
insertion, deflection, and assembly. An effective assembly 
requires designing the geometry of the gripper and its jaw 
such that it is easy to insert but very difficult to pull out. For 
clarity, we consider in Fig. 2 a gripper with a triangular jaw 
and a circular object surface. Due to symmetry, only half of 
the gripper needs to be considered. 

(a)Insertion (b)Deflection/contact (c)Assembly 
Fig. 2 Gripper assembly sequence 

Since only segment ab on the jaw contacts with the object, 
we only need to discretize surface ab into M equally spaced 
intervals. The geometric constraints can be obtained by using 
the equation of a circle 

0)~()~()~,~( 222 RyYxXYXg ojojjjj (20)
where R is the radius of the extrusion part of the object and (xo,
yo) is the center of the circle as shown in Fig. 2(b). The 
simulation parameters for both the NCO technique and FEM 
are listed in Table 1. Figs. 3 and 4 show the forces required as 
the gripper inserts into the fixture. The NCO technique 
matches well with FEM with differences less than 3%. Figure 
5 also shows the deflection shape obtained by ANSYS where 
xo= 0.06781m. The comparison of computation time of this 
particular result in Table 2 shows that the NCO technique is 
more efficient than FEM without losing accuracy.
Table 1 Simulation parameters and values 
Parameters Values Parameters Values 
Young’s modulus(N/m2) 2.6x109

Lead angle 25o

Thickness w 0.0032m 

element type 
for ANSYS 

PLANE2 for 
both gripper 
and object 

Width b 0.0095m 
Finger length L 0.057m 

# of elements for 
ANSYS 1266

Jaw length Le 0.019m N 100 
Fixture radius R 0.0089m M 100 
Fixture position yo  0.0105m   
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Fig. 4 Simulation result of a gripper assembly (µ=0.5) 

Fig. 5 Simulation results from FEM 
Table 2 Comparison of computation time 
Method Time(sec) 
NCO(without shear deformation) 20.95 
FEM(ANSYS) 516.463 

Example II: Gripper for object handling
In this example we illustrate an application where the 

gripper manipulates an object by direct contact through finger. 
The finger needs to make contact with the object. For ease of 
illustration, we consider a case where a nonuniform gripper 
manipulates an elliptical object as shown in Fig. 6. We 
perform a quasi-static analysis where the relationship 
between the moving object and rotating finger can be 
described by 

10222.236 ex (21)
where xe is in meters and  is the rotation between gripper 
frame xy and world frame xwyw. The contact surface includes 
one side of the finger that approaches the object. Since the 
contact location is unknown, the whole finger surface needs 
to be discretized and the geometric constraints can be 
obtained by using the equation of an ellipse. 

0~~~~~~
6543

2
2

2
1 bYbXbYXbYbXbg jjjjjjj (22)

where bi’s are the coefficients of the elliptical object 

Fig. 6 Schematics of a rotating gripper contacting an object 

As mentioned in Section2, Timoshenko’s beam theory 
includes a shear coefficient . Various shear coefficient 
formulae have been proposed. As shown in (23), we adopt the 
shear coefficient formula suggested by Kaneko [18] to correct 
the shear angles of grippers with rectangular cross section.

)56/()55( (23)
where  is Poison’s ratio.  We again compare the results of 
the NCO technique with FEM. Simulation parameters are 
listed in Table 3. Figure 7 shows the continuous snapshots 
where the object moves from left to right while the gripper 
rotating clockwise. The computation time of xe=0.0508m is 
compared in Table 4. In Fig. 8 we compare the results of 
frictionless contact by using the NCO technique, FEM and 
one-dimensional model (treat finger as a line segment). In Fig. 
9, the results of frictional contact are also compared with 
direction of friction force pointing to the positive x axis.
Table 3 Simulation parameters and values 
Parameters Values Parameters Values 
Young’s modulus  4.8x106 N/m2

Shear modulus 1.71x106 N/m2

Poison’s ratio 0.4 
Base thickness wb 0.030m 

element type 
for ANSYS 

PLANE2 for 
ellipse and 
PLANE42 for 
gripper 

Tip thickness wt 0.017m 
Width b 0.025m 

# of elements 
for ANSYS 1080

Ellipse long axis 0.09906m N  90 
Ellipse short axis 0.06731m M 90
Ellipse position ye 0.12065m   

Fig. 7 Snapshots of gripper-ellipse contact
( =126o, 108o, 90o, 72o, 54o from left to right) 

Table 4 Comparison of computation time 
Method Time(sec) 
NCO(without shear deformation) 15.352 
NCO(with shear deformation) 33.358 
FEM(ANSYS) 222.42 
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Fig. 9 Comparison of simulation results (µ=0.5)

The following observations can be made from the 
comparison between COM and other existing methods: 
1. The one-dimensional model, which treats the finger as a 

line segment, ignores the geometry of the finger hence is 
only applicable for fingers with relatively small thickness. 
The error of contact forces will increase as the thickness 
increases.

2. When applying the NCO technique without considering 
shear deformation of the gripper, the error increases as 
contact force increases. The overall contact forces also tend 
to be higher than those with considering shear deformation. 
When considering shear deformation, the predicted contact 
forces obtained from the NCO technique matches well with 
FEM. Typical differences are within 3%. Without losing 
accuracy, the NCO technique, which discretizes the finger 
in one dimension (along the neutral axis), is far faster than 
FEM which discretizes the gripper in two dimensions 
(along the neutral axis and transverse direction). 

3. The excellent agreement of the NCO technique and FEM 
also verifies that the assumption of small surface 
deformation is valid for frictionless contact and frictional 
contact with moderate friction coefficient. 

4. In order to satisfy the boundary conditions of 
gripper/object surface, FEM requires discretization of both 
gripper and object surface while the NCO technique only 
needs to discretize the gripper surface. Hence the 
formulation of NCO can be simpler. 

5 Conclusions 
A computational model based on Nonlinear Constrained 

Optimization (NCO) techniques has been presented for 
analyzing compliant grippers whose manipulation relies on 
direct or indirect contact with the objects. The model takes 
into account large flexural deflection and shear deformation 
whose effect can not be neglected for thick fingers. By 
formulating geometric constraints this model can be applied 
to nonuniform fingers and jaws with arbitrary geometry.   

Two types of compliant grippers have bee presented to 
illustrate the formulation. Both frictionless and frictional 
contacts have been considered. The simulation results of 
NCO technique agree well with those obtained by using FEM 
with difference typically within 3%. Compared with FEM, 
the advantages of the NCO technique are the following: (a) 
The dimension of discretization can be reduced by one, 
namely, 2D problem can be reduced to 1D and 3D problem 
can be reduced to 2D. Hence it is computationally much more 

efficient than FEM. (b) The object domain need not be 
discretized. Hence its formulation is simpler than FEM.   

The excellent agreement shows that the formulation and 
analysis offered by the NCO technique can effectively 
facilitate the process of design and optimization of compliant 
grippers that have a broad spectrum of applications ranging 
from MEMS device fabrication [8] to automated handling of 
live objects in food processing industry [2]. The formulation 
can also be further extended to compliant grippers with 
external actuators. 
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